The Xiris Blog

Using Cameras When Welding Spiral Pipe Part 2: Helical Sub Arc Welding

Posted by Peter Serles on Tuesday, October 03, 2017 @ 08:15 AM

One-step Helical (or Spiral) Submerged Arc Welding (HSAW) processes do not use GMAW/GTAW systems to tack the material into pipe form like two- step processes, but rather perform full inner welds using a sub arc welder during the initial forming stage.

This one-step process is advantageous in that it requires less equipment, and therefore less shop floor space, but it results in significantly lower processing speeds compared to the two-step process.

Both one- and two-step HSAW processes use dual-system submerged arc welding with flux recovery systems to perform the complete welds, with a preliminary weld on the inner diameter and a secondary weld on the outer diameter. Using two HSAW systems in parallel allows the weld penetration depths to meet, providing a strong weld in wall thicknesses as large as 1”.

cross-section-dual-sub-arc-welded-seam.pngCross section of Dual Sub Arc Welded Seam [1]

The quality of these welds is paramount to the success of the pipe. With applications in the transportation of oil, natural gas, water, and other flammable and nonflammable liquids, a small defect in the weld seam affects not only the density of the weld—causing higher risk of leaks—but also becomes a major point of corrosion-induced wear. Porosity, thermal cracking, undercut, and insufficient penetration are all critical defects caused by relatively common circumstances during the submerged arc welding process.

Detecting Defects Sooner With HDR Weld Cameras
Various standards organizations such as the American Society of Testing and Materials or the American Water Works Association prescribe hydrostatic testing to 2800 psi / 193 bar, as well as ultrasonic or radiography testing, to ensure the quality of the weld seam for its service life. But these tests determine the quality of the seam in a retroactive way, after the defects have already propagated throughout the tube.

The Xiris Weld Camera for Sub Arc applications, the XVC-S, is an affordable turnkey solution for monitoring the sub arc welding process. The XVC-S features an out-of-the box solution with integrated lighting, graphical-overlay-producing crosshairs, and a rugged housing suitable for the welding environment.

With on-screen monitoring tools, operators can easily identify and correct any deviations from standard operating procedures, including insufficient flux supply, misalignment of the torch or seam, and damage to the weld tip. The remote viewing monitor can display multiple processes, allowing a single operator to monitor the quality of the inner and outer sub arc welding processes simultaneously.

operator-remote-monitoring-sub-arc-welding-process.jpgOperator remotely monitoring a sub arc welding process

The small size of the XVC-S camera allows it to be easily integrated into an existing sub arc welding mount and the high-voltage and high-temperature resistant design, combined with the built-in solid-state lighting, allows high-quality images to be produced even in the harshest environments. By ensuring the quality of the weld during the sub arc welding process itself, defects can be caught sooner and corrected before the quality of the entire pipe length is compromised—saving time, money, and resources to provide an overall more-efficient process.

[1] RIBEIRO, Anderson Clayton Nascimento; HENEIN, Hani; IVEY, Douglas G. and BRANDI, Sergio Duarte. Evaluation of AH36 microalloyed steel welded joint by submerged arc welding process with one and two wires. Mat. Res. [online]. 2016, vol.19, n.1 [cited 2017-06-22], pp.143-152.

Topics: High Dynamic Range, Tube and Pipe welding, submerged arc welding

Video: The solar eclipse seen through a weld camera!

Posted by Mike Lundy on Thursday, August 31, 2017 @ 01:02 PM

The day of the recent solar eclipse was a fun one for us at Xiris. It was also a chance to show off the High Dynamic Range (HDR) capabilities of our weld cameras.

Xiris Weld Camera.jpg

One of the great advantages of state-of-the-art HDR cameras is their ability to capture both the super-bright light produced by a weld torch and the important detail in the surrounding dark background, and we realized that capability would give us an excellent view of the eclipse. All we had to do was take a camera out of the box and aim it—no special filters needed to view the breathtaking sight.


We set up outside of our office and started watching high-contrast images (about 140 dB of signal range) of the event on a monitor hooked up to our XVC-1100 camera. We all enjoyed the show, and before long, so were folks from surrounding offices, who made their way over to view with us. We even had the pleasure of a visit from Pam Damoff, a Member of Parliament from the Oakville North - Burlington district, who appreciated the chance to see what a Xiris camera can do.


It was a perfect opportunity to illustrate the power of High Dynamic Range imaging. It was also a nice break from the normal office routine!

To see for yourself how we set up and the high level of light/dark contrast we were able to capture, take a look at this short video.


Topics: weld camera, High Dynamic Range

Using Cameras When Welding Spiral Pipe: Processing and Tacking

Posted by Cameron Serles on Wednesday, August 16, 2017 @ 10:18 AM

Helical (or Spiral) Submerged Arc Welding (HSAW) allows for larger, thinner-wall welded pipe, but this benefit has a cost—a higher chance of welding defects.

By enabling greater visibility and control during processing and tacking, high dynamic range (HDR) weld cameras are a powerful tool to counter this risk.

The Advantages of HSAW

HSAW has a unique capability for producing large diameter pipes for flammable and nonflammable liquid transportation. While longitudinal pipe welding is limited to approximately 42” (1.1 m) outer diameter due to the size of the feedstock sheet, helical pipe welding is only limited by the size of the equipment, allowing pipes as large as 140” (3.6 m) outer diameter to be manufactured.  

Helically welded pipe also has a distinct advantage over longitudinally welded pipe because the radial stress in the weld seam is not concentrated along a single axis but instead rotates around the circumference of the pipe, creating a more-even stress distribution. This advantage allows for thinner tube wall construction using more economical, non-high-strength materials.

Limiting Defects with HDR Weld Cameras

Spiral welded pipe is made using either one-stage or two-stage weld processing.  While both processes begin with the incoming skelp coil of material being unwound, flattened, trimmed, squared, and then fed into the forming  stage, in one-stage processing, the forming process is immediately followed by simultaneous inside and outside Submerged Arc Welding.

In two-stage processing, the material is formed and tack welded into the pipe body shape by a gas metal welder prior to the Submerged Arc Welding process. The tack welding stage is critical for the quality of the pipe because misalignment of the initial tack will cause defects when further processed during the Submerged Arc Welding stage. Numerous factors can cause misalignment, including defects in the metallurgical properties of the feedstock, gaps between sheets, misalignment of the welding heads, or dull tooling during the processing of the skelp coil.

With the latest in camera and software technology, the Xiris XVC-1000e high-dynamic-range weld camera permits the operator to see the spiral pipe feedstock,  the weld head, and torch location relative to the weld seam during the welding process. By monitoring the images directly, an operator can make adjustments to the material inputs or torch position to quickly correct the fault before the defect propagates throughout the length of the weld.  The camera’s robust, IP65-rated enclosure allows it to survive the harsh environments of HSAW pipe mills.

Additionally, the XVC-1000e can be used with Xiris’ seam tracking software, as shown in the figure below. The seam tracker software identifies the location of the welding head and the arc contact with the material and the material seam, detecting fluctuations in alignment. With such software, out-of-alignment conditions can automatically alert the operator to make process-control adjustments or even provide closed-loop feedback to automatically move the torch back into position.

XVC-1000e with Seam Tracker Software


Adding a Xiris XVC-1000e weld camera to an HSAW pipe mill can help operators monitor the feedstock material forming process and alignment to the welding torch, ensuring that minimal defects occur during the preliminary material processing and forming stages. In so doing, pipe weld quality can be improved, reducing the risk that weld defects will propagate down the pipe mill and make it to the customer.

Topics: Tube and Pipe welding, submerged arc welding, weld seam alignment

How HDR Weld Cameras Improve Operator Safety

Posted by Cameron Serles on Thursday, August 03, 2017 @ 05:01 PM

What’s wrong with this picture?

Quite a bit.

From this position, the operator is monitoring the weld of a pipe, but he doesn’t have good visibility of both the super-bright region around the weld arc and its dark immediate background, which contains important process detail. The protective weld helmet this operator will wear to view the arc may provide adequate definition of the arc, but the helmet will filter out valuable background information.

Even more importantly, this operator is in a relatively unsafe position. No matter the type of welding being done, manual weld monitoring exposes operators to significant health and safety risks. Looking at this photo, it’s obvious that the operator would be much safer if he was monitoring the weld remotely using weld cameras.

Weld cameras have been around for years, but technological limitations hampered their effectiveness. However, recent developments in software and camera technology have made weld cameras a practical, cost-effective tool for all types of welding processes. High Dynamic Range (HDR) weld cameras—such as Xiris’s cameras—not only make it feasible to move from manual to remote monitoring, they make the move a smart, forward-thinking business decision.

After all, health and safety risk results in many costs, such as lost work time, higher workman’s compensation insurance premiums, higher group medical coverage, and litigation exposure. Getting operators away from direct-observation situations naturally decreases these costs.
HDR weld cameras also reduce costs by facilitating process improvements that increase operational efficiency. You can increase volume while decreasing defect rates and reducing labor.

This is true for any type of welding process, but as an example, consider metal additive manufacturing (MAM), which is notorious for its challenging applications  and high cost.

If they have enough space, many MAM manufacturers are putting two or more cameras into a MAM chamber to provide operators with multiple views of the assembly. Using just two cameras, operators have both a leading and trailing view of the heat source and the material being fed into the melting process. And the HDR technology makes it possible to see clear detail of both the super-bright and dark aspects of this process.

Without cameras, the alignment (of torch to substrate) must be checked manually, often from less-than-ideal, dangerous angles proximate to the machine, through a welding helmet or welding glass.

As shown below, a Xiris HDR weld camera provides a clear view of the background material and previous passes of the additive manufacturing machine to assist the operator with clear views of the torch-to-part alignment—while not even in the same room as the weld! In this close-up view of the second pass of a titanium wire deposition process, micro-fractures can be seen in the first pass, indicating a lack of shielding gas.



Because of the high-risk conditions proximate to the weld head, direct monitoring of weld processes is more dangerous and less productive than remote monitoring. In conjunction with other quality-control tools, HDR weld cameras can play a key role in enabling this more-efficient, more-effective remote monitoring.

Topics: High Dynamic Range, operator, additive manufacturing

Using Weld Cameras to Minimize Excessive Spatter on GMAW

Posted by Peter Serles on Wednesday, June 28, 2017 @ 04:00 AM

Gas Metal Arc Welding (GMAW) is characterized by the creation of sparks and spatter ejecting from the workpiece as the weld wire/filament shorts and melts over 100 times per second. The creation of spatter is an inevitable part of the GMAW process but it presents a number of issues for the production process, including damaging functional surfaces, increased consumables, and poor finish aesthetics. It may not be possible to eliminate spatter altogether, but it can be greatly reduced with a better understanding of why spatter is created and how to tune your process parameters to control it.

Spatter is the discharge of high temperature material as a result of melt pool surface tension and the conversion of thermal energy to kinetic energy. This sprays small droplets of molten metal onto the surrounding area where they cool and solidify creating a non-uniform surface finish. It is well known that different GMAW processes produce varying levels of spatter but even spray GMAW, which is known for spatter control, can greatly benefit from spatter reduction.

See the full video: Spatter Ejected from GMAW Short Circuit Process on Stainless Steel

June 28 Image 1.jpg


As well as being a nuisance to clean, spatter can be a costly problem for GMAW welding. A case study performed by Welding Answers [1] looked at the benefits of parameter tuning and found that spatter reduction by as much as 85% was possible through better parameter settings, leading to operating cost reductions of 21%. This was achieved through reduced labour costs, less lost filler material and fewer consumables required to post-process the weld.

In order to reduce the total spatter, a strong understanding of welding parameters and their effect on the weld pool is required. According to the ASME, 77% of welding defects including high spatter content are caused by improper processing conditions or operator error [2]. Most commonly, adjusting the amperage, voltage, and distance of electrode to workpiece are the significant factors influencing spatter production. Other factors that influence spatter include wire-feed speed, electrode thickness, and surface contamination.

With the use of a Xiris High Dynamic Range welding camera, the weld arc, spatter ejection, and surrounding material can all be clearly observed and the amount of spatter created during the welding process can be monitored and evaluated. This allows better understanding of the effects of varying the welding parameters and their influence on spatter formation. With a clear view of the operating field, welding parameters for every material and thickness can be adjusted to reduce spatter content and inefficiencies as a result of spatter production and cleaning can be greatly reduced.


For more information on how Xiris Weld Cameras can reduce splatter and enhance your GMAW welding processes visit 

You can visit our


for dozens of examples of the camera in action. 

Don't miss any of our amazing videos! Sign up to receive the Weld Video of the Month 




[2] C. Matthews, ‘ASME Engineer’s Data Book’, ASME Press, January 2001

Topics: quality control, Xiris, High Dynamic Range, GMAW, weld monitoring, additive manufacturing

Post Scarf Inspection of Automotive Fuel Line Tubing

Posted by Cornelius Sawatzky on Wednesday, June 14, 2017 @ 04:00 AM

Fuel line tubing is typically manufactured on an ERW welding mill similar to traditional seam welded tubing.  Once the tube has been welded, it moves down the mill for further in-line processing that may include reducing, sizing, annealing and coating processes to meet the customer’s needs.

Fuel line tubing must be perfectly round in order to create a good seal when compression fittings are applied to it. The tube surface must be free from longitudinal scratches, grooves or beads in order to prevent a leak path from developing at the interface point of the fittings.

Immediately after the fuel line tube has been welded and before any further in-line processing is done, the weld bead must be scarfed (the process whereby the weld bead is cut off with a knife).  Unfortunately, the scarfing process can be the primary contributor to creating a leak path on a compression fitting because:

1. Insufficient scarfing can leave a small portion of the weld bead protruding from the     surface of the tube. This may be on either one or both sides of the weld bead where scarfing tool positioning is critical.

June 14 Image 1.jpg

Insufficient Scarfing

2. Excessive scarfing may look perfectly round to the human eye however a non-uniform wall thickness may be lurking below the surface. What is not always apparent and usually only observed during thorough end cut inspection is a thinned portion of the tubing wall that may compromise the integrity of the tube. The reducing process applies enough external force to the tube that the tube may buckle or collapse, causing a deep surface groove.

June 14 Image 2.jpg

Excessive Scarfing

3. A mismatched setup may also be a contributor to a non-uniform wall thickness. The scarfing tool may cut the bead on the outside diameter so that it looks perfectly round to the human eye, disguising the compromised wall thickness below the surface. Sufficient mismatch conditions will most certainly cause the tube to split on end forming later in the fabrication process.

June 14 Image 3.jpgMismatched Defect, Post Scarfing

The Xiris WI2000/3000 Weld Inspection System uses laser-based imaging techniques to continually monitor the scarf zone for any variations in the scarf height, seam mismatch and possible scarf tool wear or chips that may cause a longitudinal line on the tube. By detecting and responding to these conditions proactively, a mill operator is able to reduce the chance of a leak path on the tube and avoid an unplanned stoppage to the mill due to a tube collapse during the reducing process.

For more information on how a Xiris Weld Inspection System can enhance your scarfing processes visit 

Don't miss any of our amazing weld videos! Sign up to receive the 

Weld Video of the Month 

Topics: quality control, Tube and Pipe welding, laser-based monitoring, scarfing, productivity tools, automotive

Latest Posts

Follow Me