The Xiris Blog

How HDR Weld Cameras Improve Operator Safety

Posted by Cameron Serles on Thursday, August 03, 2017 @ 05:01 PM

What’s wrong with this picture?

Quite a bit.

From this position, the operator is monitoring the weld of a pipe, but he doesn’t have good visibility of both the super-bright region around the weld arc and its dark immediate background, which contains important process detail. The protective weld helmet this operator will wear to view the arc may provide adequate definition of the arc, but the helmet will filter out valuable background information.

Even more importantly, this operator is in a relatively unsafe position. No matter the type of welding being done, manual weld monitoring exposes operators to significant health and safety risks. Looking at this photo, it’s obvious that the operator would be much safer if he was monitoring the weld remotely using weld cameras.

Weld cameras have been around for years, but technological limitations hampered their effectiveness. However, recent developments in software and camera technology have made weld cameras a practical, cost-effective tool for all types of welding processes. High Dynamic Range (HDR) weld cameras—such as Xiris’s cameras—not only make it feasible to move from manual to remote monitoring, they make the move a smart, forward-thinking business decision.

After all, health and safety risk results in many costs, such as lost work time, higher workman’s compensation insurance premiums, higher group medical coverage, and litigation exposure. Getting operators away from direct-observation situations naturally decreases these costs.
HDR weld cameras also reduce costs by facilitating process improvements that increase operational efficiency. You can increase volume while decreasing defect rates and reducing labor.

This is true for any type of welding process, but as an example, consider metal additive manufacturing (MAM), which is notorious for its challenging applications  and high cost.

If they have enough space, many MAM manufacturers are putting two or more cameras into a MAM chamber to provide operators with multiple views of the assembly. Using just two cameras, operators have both a leading and trailing view of the heat source and the material being fed into the melting process. And the HDR technology makes it possible to see clear detail of both the super-bright and dark aspects of this process.

Without cameras, the alignment (of torch to substrate) must be checked manually, often from less-than-ideal, dangerous angles proximate to the machine, through a welding helmet or welding glass.

As shown below, a Xiris HDR weld camera provides a clear view of the background material and previous passes of the additive manufacturing machine to assist the operator with clear views of the torch-to-part alignment—while not even in the same room as the weld! In this close-up view of the second pass of a titanium wire deposition process, micro-fractures can be seen in the first pass, indicating a lack of shielding gas.

View-of-additive-manufacturing-with-XIRIS-HDR-camera.jpg

Summary

Because of the high-risk conditions proximate to the weld head, direct monitoring of weld processes is more dangerous and less productive than remote monitoring. In conjunction with other quality-control tools, HDR weld cameras can play a key role in enabling this more-efficient, more-effective remote monitoring.

Topics: High Dynamic Range, operator, additive manufacturing

Using Weld Cameras to Minimize Excessive Spatter on GMAW

Posted by Peter Serles on Wednesday, June 28, 2017 @ 04:00 AM

Gas Metal Arc Welding (GMAW) is characterized by the creation of sparks and spatter ejecting from the workpiece as the weld wire/filament shorts and melts over 100 times per second. The creation of spatter is an inevitable part of the GMAW process but it presents a number of issues for the production process, including damaging functional surfaces, increased consumables, and poor finish aesthetics. It may not be possible to eliminate spatter altogether, but it can be greatly reduced with a better understanding of why spatter is created and how to tune your process parameters to control it.

Spatter is the discharge of high temperature material as a result of melt pool surface tension and the conversion of thermal energy to kinetic energy. This sprays small droplets of molten metal onto the surrounding area where they cool and solidify creating a non-uniform surface finish. It is well known that different GMAW processes produce varying levels of spatter but even spray GMAW, which is known for spatter control, can greatly benefit from spatter reduction.

See the full video: Spatter Ejected from GMAW Short Circuit Process on Stainless Steel

June 28 Image 1.jpg

 

As well as being a nuisance to clean, spatter can be a costly problem for GMAW welding. A case study performed by Welding Answers [1] looked at the benefits of parameter tuning and found that spatter reduction by as much as 85% was possible through better parameter settings, leading to operating cost reductions of 21%. This was achieved through reduced labour costs, less lost filler material and fewer consumables required to post-process the weld.

In order to reduce the total spatter, a strong understanding of welding parameters and their effect on the weld pool is required. According to the ASME, 77% of welding defects including high spatter content are caused by improper processing conditions or operator error [2]. Most commonly, adjusting the amperage, voltage, and distance of electrode to workpiece are the significant factors influencing spatter production. Other factors that influence spatter include wire-feed speed, electrode thickness, and surface contamination.

With the use of a Xiris High Dynamic Range welding camera, the weld arc, spatter ejection, and surrounding material can all be clearly observed and the amount of spatter created during the welding process can be monitored and evaluated. This allows better understanding of the effects of varying the welding parameters and their influence on spatter formation. With a clear view of the operating field, welding parameters for every material and thickness can be adjusted to reduce spatter content and inefficiencies as a result of spatter production and cleaning can be greatly reduced.

 

For more information on how Xiris Weld Cameras can reduce splatter and enhance your GMAW welding processes visit Xiris.com 

You can visit our

 WELD VIDEO LIBRARY

for dozens of examples of the camera in action. 

Don't miss any of our amazing videos! Sign up to receive the Weld Video of the Month 

 

References:

[1] http://weldinganswers.com/the-real-cost-of-welding-spatter/

[2] C. Matthews, ‘ASME Engineer’s Data Book’, ASME Press, January 2001

Topics: quality control, Xiris, High Dynamic Range, GMAW, weld monitoring, additive manufacturing

Get Better Quality from Your Laser Additive Manufacturing Process

Posted by Peter Serles on Wednesday, May 31, 2017 @ 01:26 PM

Additive manufacturing is an increasingly attractive technology that has in recent years graduated from a basic prototyping technology to one capable of producing large volumes of highly intricate part geometries in a wide range of materials. Of particular interest is the ability to produce complex geometries from industry grade metals for use in several fields including aerospace, biomechanics, and mold and die.

ASTM defines three subfamilies of additive manufacturing that are currently able to process metals: direct energy deposition, powder bed fusion, and sheet lamination. These families differ in their setup of feedstock material but all employ a directed energy source such as a laser or electron beam to process it. These laser additive manufacturing processes are characterized by rapid melting and solidification of subsequent layers in a tightly controlled environment.

Due to the repeated melting and solidification of layered material, parts undergo a complex thermal history and present a set of unique thermo-physical and metallurgical challenges. The most common defects seen in the laser additive process are a result of difficulties with maintaining a consistent melt pool caused by insufficient/excessive heat, oxidation, or contamination of the melt pool. The resulting micro-porosity in the build commonly propagates fatigue cracking in finished parts.

May 31 Blog Image 1.jpg 

SEM image of fatigue cracking in stainless steel created by selective laser melting [1]

Introducing a Xiris high dynamic range weld camera during the manufacturing process allows the operator to see exactly what is happening during the laser additive manufacturing process, namely how the laser keyhole and melt pool are interacting with the surrounding material and previous layers. With such a camera, the size, shape, and consistency of the melt pool can be directly observed making critical problems such as an uneven melt pool, unfocused or unsuitable laser power, misalignment of the powder supply, or material powder contamination easy to identify and correct.

By determining the root source of these problems, a better understanding of build failure can be obtained and potential issues can be identified before they continue through the entire production process. This is especially useful for products that contain internal cavities or other features that are difficult to inspect post-build. On average, one quarter of the total time required to complete a laser additive manufacturing build is spent on the post-build inspection. The Xiris weld camera provides increased confidence in the quality of your components and can reduce the need for post-build inspection or destructive testing.

Laser  Additive Manufacturing – Steel – Process Monitoring

For more information on how Xiris Weld Cameras can enhance your laser additive manufacturing processes visit Xiris.com 

You can visit our

 WELD VIDEO LIBRARY

for dozens of examples of the camera in action. 

Don't miss any of our amazing videos! Sign up to receive the Weld Video of the Month 

References: [1] Li. R. et al. Densification behavior of gas and water atomized 316L stainless steel powder during selective laser melting. Applied Surface science. 2010. 256(13) pp. 4350-4356. 

Topics: quality control, Xiris, High Dynamic Range, laser additive manufacturing, additive manufacturing, productivity tools

Xiris Attends CanWeld 2016

Posted by Catherine Cline on Wednesday, October 12, 2016 @ 09:14 AM

Xiris had the pleasure of co-exhibiting with Maverick Testing and TIP TIG USA at the CanWeld Tradeshow and Conference, held at the Expo Centre in Edmonton Alberta, Oct. 5-6, 2016.   The conference was well attended and drew from a wide range of industry, including mining, oil and gas, pipelines, power generation, petrochemical, fabrication and construction, manufacturing, steel and shipbuilding and pulp and paper.  Educators were also out in full force including attendees from Red Deer College, Thompson River University, Southern Alberta Institute of Technology (SAIT) and Northern Alberta Institute of Technology (NAIT).   All were very enthusiastic about the Xiris weld videos on display at the booth citing the unbelievable image clarity Xiris is able to achieve with its high dynamic range weld cameras.Blog_Oct_12_Image_1.jpg

The Maverick and TipTig Booths at CanWeld with “TEX” Front and Centre.

Maverick Testing, with locations in La Porte, Texas and Corpus Christi, Texas, is a full spectrum, state-of-the-art testing laboratory providing a comprehensive range of metallurgical and mechanical testing services as well as Welding Procedure Specification development.  Maverick was exhibiting its welder test coupons which are used in house for its Welding Process Qualifications but are also available to be purchased and shipped to other facilities or jobsites.  Visit coupons@mavtechinc.com

TIP TIG offers a very unique hotwire GTAW welding process that uses patented wire feed technology to provide the highest quality, highest deposition rates with the lowest possible heat input values, while consistently delivering the greatest metallurgical results on all alloys.  The process has also been proven to provide the lowest possible hexavalent chrome weld fume emissions which have been measured as “undetectable”.  The TIP TIG technology can be used successfully on a number of alloys including; Carbon, Duplex and Super Duplex Stainless Steels, Inconel, Stellite, Titanium, Aluminum, Hastelloy and many others.  Visit www.tiptigusa.com for more information.

Xiris was also fortunate to be able to integrate our cameras into the orbital welding system at the Lincoln Electric booth.   The welders were extremely impressed by the camera system and found it far easier to weld looking at a clear picture on the computer screen versus the view through a weld helmet!

Blog_Oct_12_Image_2.jpg

The Xiris XVC-1000 integrated into the Lincoln Orbital Welder.

 

Next, Xiris looks forward to Fabtech 2016 in Las Vegas, November 16-18 where both Lincoln and TIP TIG (as well as many others) will be welding with Xiris Cameras.  Check future blogs for details.  We look forward to seeing you there!

 

Join us at Fabtech Booth N6036Blog_Oct_12_Image_3.jpg

For more information on how Xiris Weld Cameras can help monitor your weld processes, visit Xiris.com 

Topics: weld camera, Xiris, welding, High Dynamic Range, fabtech, Maverick Testing, CanWeld 2016, Tip Tig, Lincoln Electric

Monitoring Welding Processes in Color

Posted by Justin Grahn on Tuesday, September 13, 2016 @ 12:52 PM

In most situations, a high dynamic range (HDR) image that provides a clear view of the weld arc and immediate work environment is enough to provide operators everything they need to control or adjust their welding process.  Typically, such images are provided in monochrome because, in certain circumstances, it provides better image saturation and fidelity. Monochrome images can accentuate the light and shadows of a welding scene, making the texture of the welding surfaces, torch tip, wire and melt pool easier to see.  Images with a wide range of tonal values, such as what might exist in a high dynamic range image of a welding scene, tend to work well in monochrome.  This is especially the case when the tones in the image range all the way from the blackest blacks of the background to the whitest whites of the welding arc, with lots of varying grey tones in between.

However, for some welding situations, color imaging that delivers high dynamic range imaging has particular value.  The presence of color allows the boundary of aspects of the weld process to be easily detected by the operator.  Bright hues that highlight an element, such as the melt pool, shielding gas or torch tip can improve the visibility of that object to the operator.

Sep_13_Blog_Image_1.png

Color Image of a Manual TIG Process

Of all the types of welding, perhaps the most suitable for color imaging is GTAW (TIG).  Some of the features that are better seen with color in a TIG process include:

  • Melt Pool: Better edge definition and detection of flow of molten material.
  • Shielding Gas: Operators are able to see if there is any shielding gas present.  Also, each shielding gas mixture typically has its own signature certain color.  If the gas chemistry in the welding environment changes, then so does its color. 
  • Oxidation: Very easy to detect the presence of flames resulting from the burn-off of any oils or impurities.
  • Heat Affected Zone (HAZ): The leading edge of the heat affected zone can be detected in the parent material as it typically colorizes at elevated temperatures.  This can indicate the amount of heat penetration and energy transfer.
  • Temperature Indicator: Operators can clearly see discoloration of metal due to excess heat in the welding process.
  • Torch Tip: Easier to see the definition of the torch tip and cup relative to the weld arc.  Allows the operator to monitor the impurity build up on the torch tip and spatter presence on the cup.

Sep_13_Blog_Image_2.png

Narrow Gap TIG Welding – Color Exposes Different Details

Conclusion

Ultimately, the choice of whether to use color or black and white camera technology depends on what feels right for the operator.  Nevertheless, for certain welding operations such as TIG, the use of color imaging can significantly enhance the clarity and detail of the image, thereby improving the operator’s ability to detect even small changes in the weld scene.

For more information on how Xiris Color Weld Cameras can help monitor your weld processes, visit Xiris.com 

Sign up to receive our Weld Video of the Month

Topics: quality control, Xiris, welding, High Dynamic Range, TIG, productivity tools, color imaging

Using Weld Cameras For Torch Alignment

Posted by Catherine Cline on Tuesday, August 16, 2016 @ 11:09 AM

When Xiris demonstrates its weld camera systems, one of the unexpected benefits an operator notices right away is the ability to quickly align the torch and seam.   Xiris weld cameras have integrated LED’s that provide a nice bright image of the seam and torch prior to starting the weld process.  Before we begin our demonstration, we ask the operator to align the torch and the seam which is usually done manually with a visual check.  Once we are told the system is aligned, we ask the operator to look at the computer screen and, 90% of the time, the torch and seam are misaligned.  The operator then begins to use the weld camera system right away to achieve perfect alignment on a consistent basis.

Here are three videos that demonstrate the alignment process.  In these examples the manufacturer has installed a positioning sensor on the robotic arm which is meant to ensure perfect torch alignment during each weld and the operator simply verifies the alignment prior to welding.

Operator Alignment:

The positioning sensor and the operator have misaligned the torch, resulting in a bad weld.

 

 

Weld Camera Assisted Alignment:

The operator has used the weld camera system to verify the alignment and you will see the adjustments that were made after the robot had been aligned.  Not only do the cameras ensure accuracy, the operator can perform the alignment quickly, right from the console rather than bending, stretching or climbing up on to the equipment to achieve proper alignment.

 

 

 

 

 

 

 

 

 

 

 

For more information on how Xiris Weld Cameras can ensure accurate alignment of your torch and weld seam, visit Xiris.com

Topics: quality control, weld camera, welding, High Dynamic Range, productivity, color weld camera, weld seam, weld seam alignment