The Xiris Blog

Using Weld Cameras to Enable a Continuous Coil Joining Process

Posted by Cameron Serles on Thursday, January 10, 2019 @ 01:00 PM

Xiris’ High Dynamic Range (HDR) welding cameras can be used in a multitude of ways, some of which our customers have discovered on their own.

For example, a manufacturer of thick-walled steel pipe recently figured out how to use our cameras in a way that has greatly improved the efficiency of their coil joining process.

Operators only have about 10 minutes to end-sheer, mate, and weld coils during the semi-automatic front-end part of the process. The cost of coil joint failure is high, so the manufacturer would stop the tube mill to check on the integrity of the coil joint before continuing.

Even though the stoppage prevented more-costly failures, it had its own cost. What our customer needed was a way to adequately monitor the end joining in the infeed buffer of the pipe mill without having to stop the process to assure correct coil matching.

They knew the capabilities of our cameras to enable real-time remote monitoring of weld processes with greater visibility than ever before possible. So they developed a plan to use Xiris XVC-110e50 cameras to monitor the coil joining during the front end of the process. This monitoring eliminates the need for routine stoppages.

This solution also keeps operators safer. Coil joining is performed using a MIG welding torch mounted onto a linear track with dual-axis torch position. Previously, operators had to be close enough to the torch to see what was happening with the weld. With the Xiris HDR cameras, they have a clear view of the coil joining process from a safe remote location.

With their creative use of our HDR camera technology, this manufacturer was able to significantly reduce the time and cost of coil joining, while increasing consistency.

For a video of the coil joining process taken by the XVC-1100e50 camera, please view the video below

Coil Joining Video 

Better Images. Better Decisions. Better Process Control.

Follow Xiris on social media for regular updates and welding videos!

Instagram LinkedIn FacebookTwitter

Topics: quality control, tube, reduced costs, weld camera system, coil joining, tube mill

How to Detect Scarf Tool Wear on a Tube Mill

Posted by Cameron Serles on Thursday, December 13, 2018 @ 11:00 AM

During tube production, immediately after the tube has been welded and before any further in-line processing is done, the weld bead must be scarfed off the tube. Scarfing is the process whereby the weld bead is cut off with a knife, or scarfing tool.  Unfortunately, if the scarfing tool is not done properly, the tube may not meet end user customer specifications because of a rough surface left behind by the scarf tool.  The result can be the primary contributor to creating a leak path on a compression fitting.

Using a surface profiling tool such as the Xiris WI2000, the scarf defect measurement can be used to detect how well the scarfing tool is cutting the weld bead and indicate the amount of scarf tool wear. 

Scarf tool wear describes the gradual failure condition of a scarf cutting tool on a tube mill as a result of ongoing use.  It can occur either as flank wear in which the portion of the scarf tool in contact with the welded tube erodes over time sometimes causing a ridge to be left behind in the scarf zone; or as crater wear, in which contact with chips of weld bead erodes the rake face of the tool causing an uneven cut surface; or a cluster of weld bead material building up on the face of the tool causing it to dredge a groove in the scarf zone. These conditions are somewhat normal for tool wear, and they do not seriously degrade the use of the scarf tool until it becomes serious enough to cause a scarf tool cutting edge failure that may be a concern for a potential leak path for the tube in its final use.

The scarf defect measurement on the WI2000 looks for any significant deviations in surface height above or below the ideal scarf surface.  The Scarf Defect will detect the absolute value of the largest defect on the scarf surface.  Any significant amount of scarf tool wear could reduce the specifications and performance of the final tube, especially for some automotive applications where tight assembly requirements or a smooth, scratch free surface is required.

Scarf Defect_2017-01

The Definition of a Scarf Tool Wear: The scarf plane can be defined as the straight line drawn between the left and right scarf edges.  Any detected features above or below the scarf plane, are measured as a scarf defect.  The actual amount of wear is defined as the distance from the scarf plane measured perpendicularly to the scarf plane.

If you have any questions about our profile inspections for tube and pipe, please feel free to contact us. 

 

Better Images. Better Decisions. Better Process Control.

Follow Xiris on social media for regular updates and welding videos!

Instagram LinkedIn FacebookTwitter

Topics: quality control, Tube and Pipe welding, bead height, scarfing, pipe, tube, defects, WI-2000p, tubedefects, tube mill

Detecting Bead Ripple During Tube Manufacturing

Posted by Cameron Serles on Friday, October 05, 2018 @ 11:45 AM

Lighter wall mild steel pipe production requires bead height monitoring for bead ripple. Bead ripple is a condition sometimes associated with a weld process that is too hot and may result in longitudinal weld cracks.  Bead ripples appear along the length of the weld bead as undulations with measurable differences in height by as much as 1/8” (3 mm).  Often the height of the bead ripple on a welded pipe is a function of the heat that has gone into the weld process:  the higher the heat, the greater the height of the bead ripple. In most applications, a weld bead should have a smooth, consistent height as an indicator of a stable weld process.

Bead Ripple1An image of a weld bead with bead ripple

In some applications, a weld bead ripple can be desired, such as in certain coated steel products. This ensures that all contaminants from the area of the weld have been squeezed out, preventing potential inclusions from occurring in the weld bead, which would result in compromised weld quality.

By measuring the bead height on a weld bead over a period of time using a laser based triangulation system , an indication of the smoothness of the weld bead can be made.  By calculating ongoing historical statistics of the head height (e.g. min/max, average, standard deviation), an indication of smoothness of the weld bead or bead ripple can be made.  Tolerances of the amount of smoothness or ripple can be set to match the process and when exceeded, an alarm can be set.

Bead Ripple Detection1 Measuring the weld bead height over successive images can detect bead ripple over time

Topics: quality control, Tube and Pipe welding, bead height, tube, productivity tools, tubedefects, tube mill

Using Weld Cameras to Minimize Excessive Spatter on GMAW

Posted by Peter Serles on Wednesday, June 28, 2017 @ 04:00 AM

Gas Metal Arc Welding (GMAW) is characterized by the creation of sparks and spatter ejecting from the workpiece as the weld wire/filament shorts and melts over 100 times per second. The creation of spatter is an inevitable part of the GMAW process but it presents a number of issues for the production process, including damaging functional surfaces, increased consumables, and poor finish aesthetics. It may not be possible to eliminate spatter altogether, but it can be greatly reduced with a better understanding of why spatter is created and how to tune your process parameters to control it.

Spatter is the discharge of high temperature material as a result of melt pool surface tension and the conversion of thermal energy to kinetic energy. This sprays small droplets of molten metal onto the surrounding area where they cool and solidify creating a non-uniform surface finish. It is well known that different GMAW processes produce varying levels of spatter but even spray GMAW, which is known for spatter control, can greatly benefit from spatter reduction.

See the full video: Spatter Ejected from GMAW Short Circuit Process on Stainless Steel

June 28 Image 1.jpg

 

As well as being a nuisance to clean, spatter can be a costly problem for GMAW welding. A case study performed by Welding Answers [1] looked at the benefits of parameter tuning and found that spatter reduction by as much as 85% was possible through better parameter settings, leading to operating cost reductions of 21%. This was achieved through reduced labour costs, less lost filler material and fewer consumables required to post-process the weld.

In order to reduce the total spatter, a strong understanding of welding parameters and their effect on the weld pool is required. According to the ASME, 77% of welding defects including high spatter content are caused by improper processing conditions or operator error [2]. Most commonly, adjusting the amperage, voltage, and distance of electrode to workpiece are the significant factors influencing spatter production. Other factors that influence spatter include wire-feed speed, electrode thickness, and surface contamination.

With the use of a Xiris High Dynamic Range welding camera, the weld arc, spatter ejection, and surrounding material can all be clearly observed and the amount of spatter created during the welding process can be monitored and evaluated. This allows better understanding of the effects of varying the welding parameters and their influence on spatter formation. With a clear view of the operating field, welding parameters for every material and thickness can be adjusted to reduce spatter content and inefficiencies as a result of spatter production and cleaning can be greatly reduced.

 

For more information on how Xiris Weld Cameras can reduce splatter and enhance your GMAW welding processes visit Xiris.com 

You can visit our

 WELD VIDEO LIBRARY

for dozens of examples of the camera in action. 

Don't miss any of our amazing videos! Sign up to receive the Weld Video of the Month 

 

References:

[1] http://weldinganswers.com/the-real-cost-of-welding-spatter/

[2] C. Matthews, ‘ASME Engineer’s Data Book’, ASME Press, January 2001

Topics: quality control, Xiris, High Dynamic Range, GMAW, weld monitoring, additive manufacturing

Post Scarf Inspection of Automotive Fuel Line Tubing

Posted by Cornelius Sawatzky on Wednesday, June 14, 2017 @ 04:00 AM

Fuel line tubing is typically manufactured on an ERW welding mill similar to traditional seam welded tubing.  Once the tube has been welded, it moves down the mill for further in-line processing that may include reducing, sizing, annealing and coating processes to meet the customer’s needs.

Fuel line tubing must be perfectly round in order to create a good seal when compression fittings are applied to it. The tube surface must be free from longitudinal scratches, grooves or beads in order to prevent a leak path from developing at the interface point of the fittings.

Immediately after the fuel line tube has been welded and before any further in-line processing is done, the weld bead must be scarfed (the process whereby the weld bead is cut off with a knife).  Unfortunately, the scarfing process can be the primary contributor to creating a leak path on a compression fitting because:

1. Insufficient scarfing can leave a small portion of the weld bead protruding from the     surface of the tube. This may be on either one or both sides of the weld bead where scarfing tool positioning is critical.

June 14 Image 1.jpg

Insufficient Scarfing

2. Excessive scarfing may look perfectly round to the human eye however a non-uniform wall thickness may be lurking below the surface. What is not always apparent and usually only observed during thorough end cut inspection is a thinned portion of the tubing wall that may compromise the integrity of the tube. The reducing process applies enough external force to the tube that the tube may buckle or collapse, causing a deep surface groove.


June 14 Image 2.jpg

Excessive Scarfing

3. A mismatched setup may also be a contributor to a non-uniform wall thickness. The scarfing tool may cut the bead on the outside diameter so that it looks perfectly round to the human eye, disguising the compromised wall thickness below the surface. Sufficient mismatch conditions will most certainly cause the tube to split on end forming later in the fabrication process.

June 14 Image 3.jpgMismatched Defect, Post Scarfing

The Xiris WI2000/3000 Weld Inspection System uses laser-based imaging techniques to continually monitor the scarf zone for any variations in the scarf height, seam mismatch and possible scarf tool wear or chips that may cause a longitudinal line on the tube. By detecting and responding to these conditions proactively, a mill operator is able to reduce the chance of a leak path on the tube and avoid an unplanned stoppage to the mill due to a tube collapse during the reducing process.

For more information on how a Xiris Weld Inspection System can enhance your scarfing processes visit Xiris.com 

Don't miss any of our amazing weld videos! Sign up to receive the 

Weld Video of the Month 

Topics: quality control, Tube and Pipe welding, laser-based monitoring, scarfing, productivity tools, automotive

Get Better Quality from Your Laser Additive Manufacturing Process

Posted by Peter Serles on Wednesday, May 31, 2017 @ 01:26 PM

Additive manufacturing is an increasingly attractive technology that has in recent years graduated from a basic prototyping technology to one capable of producing large volumes of highly intricate part geometries in a wide range of materials. Of particular interest is the ability to produce complex geometries from industry grade metals for use in several fields including aerospace, biomechanics, and mold and die.

ASTM defines three subfamilies of additive manufacturing that are currently able to process metals: direct energy deposition, powder bed fusion, and sheet lamination. These families differ in their setup of feedstock material but all employ a directed energy source such as a laser or electron beam to process it. These laser additive manufacturing processes are characterized by rapid melting and solidification of subsequent layers in a tightly controlled environment.

Due to the repeated melting and solidification of layered material, parts undergo a complex thermal history and present a set of unique thermo-physical and metallurgical challenges. The most common defects seen in the laser additive process are a result of difficulties with maintaining a consistent melt pool caused by insufficient/excessive heat, oxidation, or contamination of the melt pool. The resulting micro-porosity in the build commonly propagates fatigue cracking in finished parts.

May 31 Blog Image 1.jpg 

SEM image of fatigue cracking in stainless steel created by selective laser melting [1]

Introducing a Xiris high dynamic range weld camera during the manufacturing process allows the operator to see exactly what is happening during the laser additive manufacturing process, namely how the laser keyhole and melt pool are interacting with the surrounding material and previous layers. With such a camera, the size, shape, and consistency of the melt pool can be directly observed making critical problems such as an uneven melt pool, unfocused or unsuitable laser power, misalignment of the powder supply, or material powder contamination easy to identify and correct.

By determining the root source of these problems, a better understanding of build failure can be obtained and potential issues can be identified before they continue through the entire production process. This is especially useful for products that contain internal cavities or other features that are difficult to inspect post-build. On average, one quarter of the total time required to complete a laser additive manufacturing build is spent on the post-build inspection. The Xiris weld camera provides increased confidence in the quality of your components and can reduce the need for post-build inspection or destructive testing.

Laser  Additive Manufacturing – Steel – Process Monitoring

For more information on how Xiris Weld Cameras can enhance your laser additive manufacturing processes visit Xiris.com 

You can visit our

 WELD VIDEO LIBRARY

for dozens of examples of the camera in action. 

Don't miss any of our amazing videos! Sign up to receive the Weld Video of the Month 

References: [1] Li. R. et al. Densification behavior of gas and water atomized 316L stainless steel powder during selective laser melting. Applied Surface science. 2010. 256(13) pp. 4350-4356. 

Topics: quality control, Xiris, High Dynamic Range, laser additive manufacturing, additive manufacturing, productivity tools

Latest Posts

Follow Me