The Xiris Blog

The South Dakota School of Mines & Technology Relies on XVC 1000

Posted by Catherine Cline on Tuesday, April 12, 2016 @ 01:00 AM

Recently, Xiris had the pleasure of working with the Additive Manufacturing Laboratory (AML) team at the South Dakota School of Mines & Technology.   AML has been using the XVC 1000 camera to assist with its metal additive manufacturing automation process.  AML has used CCD cameras in the past, but according to Joshua Hammell, Research Scientist and AML Lab Manager, “the high dynamic range of the XVC-1000, provides orders of magnitude more information about the process, while removing the need for different optical filters during cold alignment and high temperature processing. This is a major advantage for process automation.” 

The XVC 1000 has been an essential tool for machine and process development, saving the team at AML a great deal of time and money.  The initial plan for the camera was for laboratory use only; however, AML has since decided that the cameras will be integrated into all of its metal additive manufacturing systems for process monitoring during production. 

Details of the current AML process are very confidential but AML has granted us permission to show an older process development video taken with the XVC 1000…

 

For more information on how Xiris Weld Cameras can help with your manufacturing processes, please visit Xiris.com 

Sign up to receive our Weld Video of the Month

Topics: weld camera, welding automation, Education, welding, laser additive manufacturing, additive manufacturing

Using a View Camera to Monitor Automotive Body Laser Welds

Posted by Cameron Serles on Friday, January 09, 2015 @ 09:29 AM

During the initial stages of automotive assembly, a car’s chassis is built up by welding together all its major sheet metal components, such as side walls, doors, door frames, roof joints, floor panels, the engine cavity and hood parts. The assembly process stage of welding all these components together is known as “body-in-white” and has been the source of much technology advancement in recent years.

One major technology advancement has been the introduction of laser welding processes to replace the traditional methods of fastening and joining the metal components. Laser welding offers numerous advantages over traditional techniques such as resistive spot welding but like any new technology, it requires more precise material preparation and careful process implementation.

 

Essential Advantages of using Laser Welding for Body in White

  • Single-sided access to the point of welding, allowing for simpler chassis design in some situations.
  • Better looking joints that are almost invisible are possible with some creative laser weld placement or by using laser brazing technology.
  • The flanges required to hold together sheet metal components around apertures such as door openings can be smaller, leading to weight reduction and better automotive designs.
  • Higher process speeds that can improve productivity, reduce cycle time, and reduce production floor space

 

However, there are disadvantages of the process….

  • Tight Tolerances. The narrowly focused laser beam requires very precise seam preparation to ensure a successful result. Overlooking this in early automotive laser history resulted in many failures.
  • Specific Repair Methods. Because laser welding is a relatively new joining method, repair techniques specifically designed for laser welding must be used when repairing laser welded joints.

 

The Solution

The solution to this problem is very precise seam preparation (with almost no gap) and precise clamping methods. But even with the best preparation, the seam can vary enough to cause problems with the weld process. With such a process, it is important to maintain very good alignment of the seam to the laser spot: because the laser beam is so small, a small movement of the seam out of alignment may jeopardize the quality of the alignment.

To solve this problem, a high dynamic range camera can be added to the laser process, either coaxially in the optics of the laser beam delivery system itself, or off axis. In either case, the camera can be positioned to see the laser keyhole, weld pool and weld seam. Because the high dynamic camera can see much more of the bright areas, including the weld pool and keyhole, as well as the darker areas such as the seam and background, it becomes much easier for operators to monitor the laser process to verify that it is in alignment.

Another “solution” involves the combination of laser welding and an open arc welding process (e.g. MIG or TIG) in a so-called hybrid process. For such a process, the open arc welding method delivers extra weld material that makes sure that the seam flanges are processed even without a precise seam; the laser permits deep penetration into the substrate, and the welding speed is significantly higher than if an open arc welding process was used on its own. Once again, the use of a High Dynamic Camera can help verify that all components of the weld environment are working correctly, in particular the alignment of the laser arc to the seam.

 

Jan_9.15_Blog_Body_in_White

Figure 1: Camera Running Co-Axially to the Laser Beam Delivery System1

 

Conclusion

Laser processing continues to grow market share in a number of applications in body-in-white automotive manufacturing. However, as with any new process, it must be carefully implemented to take full advantage of the technology. To maximize the chances of success, a Weld Camera with a High Dynamic Range imaging capability should be used to provide operators with adequate weld visibility to monitor and control the laser to seam alignment before it moves out of control and causes defects in the welded seam.

 _______________________________________________________________________

1. Adapted from: A. Ribolla et al. / Journal of Materials Processing Technology 164–165 (2005) 1120–1127

Topics: Laser welding, welding automation, High Dynamic Range

Xiris Gets Rave Reviews of our Weld Camera from a 3rd Party!

Posted by Catherine Cline on Tuesday, December 23, 2014 @ 03:05 PM

Xiris received an early Christmas present this year in the form of a fantastic blog post reviewing our XVC Weld Camera. Brian Dobben of Visionary Welding, a blogging site dedicated to the pursuit of excellence in welding automation, put the Xiris XVC-O Open Arc Weld Camera System to the test and had excellent results.  

Mr. Dobben has never issued an independent review of a product, and was not prompted by us, but after testing the XVC-O Camera System, he said, in his own words, “it’s a story worth telling.” To see the blog in its entirety, please visit www.VisionaryWelding.org.

2014 has been incredibly busy and successful for Xiris Automation with the launch of the new XVC-1000 Weld Camera and continuous improvements to the XVC-0 Open Arc and XVC-S Sub Arc Weld Camera Systems. This favorable review by Mr. Dobben provides confirmation we are positioned well to grow within the welding automation industry and is a wonderful way to end the year and look forward to 2015.

Xiris Automation would like to take this opportunity to wish everyone a Merry Christmas and prosperous New Year.

Topics: weld camera, welding automation, welding

How to Get the Best View of an Open Arc Weld

Posted by Cameron Serles on Thursday, July 17, 2014 @ 06:00 PM

Attaining a good image of a weld and the surrounding background has been a struggle ever since video cameras for welding became available.  The problem has always been the range of brightness that occurs during welding: the ratio between the maximum and minimum light intensity is usually too great for a standard camera to measure properly.  Standard cameras on the market today can typically measure about 1,000 levels of brightness between the maximum and minimum light levels in an image.  However, in a typical open arc welding environment, there is a brightness range that can exceed 10,000,000 levels of brightness between the brightest portion of the welding arc, and the darker areas surrounding the weld.  Using a standard camera to image such a weld will create an image similar to the image below on the left, where the camera sensor will image the scene up to a point and then saturate when it gets too bright. This causes the bright areas of the image to appear as a white blur.

 

To solve this problem, Xiris Automation has developed the XVC-O View Camera that uses advanced electronics with logarithmic sensitivity to be able to see more than 10,000,000 levels of brightness in an image.  As a result, more image detail is visible than ever seen before. The detail of the weld arc, the shielding gas, weld pool, torch tip, and weld seam can all clearly be seen.  The image below on the right is an image taken from the XVC-O camera of an open arc welding process. The weld arc is no longer saturated and is clearly visible as is the detail of the background, providing better quality information for the weld operator.

 

GOOOOOOD resized 600       Standard Camera Image of a Weld                      Xiris XVC-O Camera Image of a Weld

With the ability to see more detail of the weld arc and the surrounding environment, welding technicians are able to use the XVC-O to better control their welding processes through better quality assurance and process feedback. 

To see examples of the video quality possible with the XVC-O across a variety of welding processes and materials, please see our Weld Video Library here.

 

Topics: weld camera, weld inspection, Laser welding, welding automation, weld environment, Machine Vision, image processing, Education, Welding Process, weld video, Xiris, image contrast

Successful Show in Beijing for Xiris!

Posted by Dean Zhao on Tuesday, June 24, 2014 @ 01:55 PM

Xiris Automation Inc. exhibited at the XVC-O Weld View Camera in this year's Beijing Essen Welding Show. The show started June 10th and ended on June 13th, 2014 with an estimated 25,000 visitors from 50 different countries attending the large venue.  Ninety percent of these visitors were reported from China, and the remaining 10% were international visitors

Fanuc   crowd resized 600

This year's show was a very unique opportunity for Xiris, as the use of weld cameras is new to China.  This allowed us an advantage within the fast paced Chinese market to establish many new relationships with both machine builders and end users alike.  The show was a late addition to Xiris' busy tradeshow schedule this 2014 season. Therefore our booth was not in our preferred location, but to our immense pleasure, this did not deter any interest in the Xiris XVC-O camera. There was an enormous turn-out and many discussions with potential customers.  With both new and repeat customers in attendance, the booth was constantly crowded with interested prospective clients.

20140611 102840 resized 600

This demand and fascination with our product was due to the unique qualities of the XVC-O in the industry.  It is a perfect solution for monitoring many different welding processes, and perfect for welding professionals.  In China, as elsewhere, System integrators and general fabricators are constantly fighting to differentiate themselves from the intense competition in the industry. The Xiris XVC-O could be the key. Our camera can provide enough image clarity to monitor the entire welding process including both the brightness of the welding arc and its darker background.

Be sure to check out our website for full event details, and stay tuned for more updates on new products, sources, and pictures on all of our social media. We are now on Google+, as well as LinedIn and Twitter.

Topics: weld camera, weld inspection, welding automation, Welding Process, Xiris, welding, Trade Show

How System Integrators Use Xiris Weld Cameras in Automation

Posted by Cameron Serles on Tuesday, June 10, 2014 @ 03:15 PM

Systems integrators who build automated welding processes are always searching for improved business models. There are thousands of small and medium sized automation system integrators around the world that are experts in the industry. This challenges each company to differentiate themselves from their competition, and do so by providing a unique value proposition to their customers.

One of the best ways to gain this competitive advantage is for system integrators to leverage rapidly evolving technology. By applying it to their customer’s welding automation solutions this allows companies to capitalize on an evolving technology, with the goal of improving profitability and efficiency.

An emerging technology that many systems integrators are considering is the use of cameras for monitoring the welding process.  While cameras have been used to monitor welding for years, it is only recently that cameras, such as the Xiris XVC-O Open Arc Weld Camera, have provided enough image clarity that system integrators have considered them a useful tool to provide to customers. 

welding line resized 600

 

Many system integrators face the same challenge:  how to build a system to keep operators from having to be in direct proximity of the automated cell in order to monitor the weld.  Most fabricator customers are increasingly dissatisfied with automated welding solutions that don’t permit operators to monitor the weld remotely.  By providing a camera to monitor the welding process, systems integrators can provide their customers with a valuable production tool.

Adding a camera system to a work cell can help increase welding automation business that might not otherwise be gained by a systems integrator. By removing the operator from the immediate work area of the welding environment there are immense benefits to the customer that would increase demand for a system integrator. For example, instead of multiple operators assigned to multiple production lines to manage rollers, material handling, and welding processes, customers benefit from having one operator per line at one control panel managing it all, increasing productivity, quality and reducing human error.

By introducing weld cameras into automated welding work cells, systems integrators can achieve an abundance of benefits. They will be able to differentiate themselves in the market, expand into new market sectors, improve technical competency, as well as improve the functional excellence of the overall product offering.

Topics: remote monitoring, quality control, weld camera, welding automation, weld environment, Machine Vision, camera placement, field of view, Welding Process, Xiris